题意:给一堆二维的点,问你最少用多少距离能把这些点都围起来
思路:
凸包:
我们先找到所有点中最左下角的点p1,这个点绝对在凸包上。接下来对剩余点按照相对p1的角度升序排序,角度一样按距离升序排序。因为凸包有一个特点,从最左下逆时针走,所有线都在当前这条向量的左边,根据这个特点我们进行判断。我们从栈顶拿出两个点s[top-1],s[top],所以如果s[top-1] -> p[i] 在 s[top-1] -> s[top] 右边,那么s[top]就不是凸包上一点,就这样一直判断下去。判断左右可以用叉乘。
参考:
模板(考虑n <= 2):
struct node{ double x, y;}p[maxn], s[maxn];int n, top;double dis(node a, node b){ return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));}bool cmp(node a, node b){ double A = atan2((a.y - p[1].y), (a.x - p[1].x)); double B = atan2((b.y - p[1].y), (b.x - p[1].x)); if(A != B) return A < B; else{ return dis(a, p[1]) < dis(b, p[1]); }}double cross(node a, node b, node c){ //(a->b)X(a->c) return (b.x - a.x) * (c.y - a.y) - (c.x - a.x) * (b.y - a.y);}void solve(){ int pos = 1; for(int i = 2; i <= n; i++){ if(p[i].y < p[pos].y || (p[i].y == p[pos].y && p[i].x < p[pos].x)){ pos = i; } } swap(p[1], p[pos]); sort(p + 2, p + n + 1, cmp); s[0] = p[1], s[1] = p[2]; top = 1; for(int i = 3; i <= n; i++){ while(top >= 1 && cross(s[top - 1], p[i], s[top]) >= 0){ //向右转出栈 top--; } s[++top] = p[i]; }}
代码:
#include #include